首頁 > 美迪醫訊 > 斯坦福大學研究發現小鼠年老的干細胞可能與老年性疾病相關 |
斯坦福大學研究發現小鼠年老的干細胞可能與老年性疾病相關 【?2007-07-24 發布?】 美迪醫訊
隨著血液中的干細胞逐漸衰老,遺傳學上的突變可能是老年性血液疾病的根源,以上結論是由于斯坦佛大學醫學院的研究人員在小鼠上發現的。 As stem cells in the blood grow older, genetic mutations accumulate that could be at the root of blood diseases that strike people as they age, according to work done in mice by researchers at the Stanford University School of Medicine. “This and our previous work points out why older people are more likely to get blood diseases, such as leukemia or anemia, and are less likely to make new antibodies that would protect against infections like the flu,” said senior author Irving Weissman, MD, director of the Stanford Institute for Stem Cell Biology and Regenerative Medicine and of the Stanford Comprehensive Cancer Center. The work is published in the June 6 issue of Nature. In past studies, this group of researchers had shown that blood-forming stem cells in the bone marrow of mice became less able to divide and replenish the supply of blood cells as they aged. The question was why. Researchers have put forward many theories about how cells age, said Derrick Rossi, PhD, postdoctoral scholar and co-first author of the paper. One of those theories has to do with cells accumulating genetic mutations. “The idea is that, over time, accumulated DNA damage progressively diminishes the cell’s ability to perform its normal function,” he said. However, researchers had thought that mutations were unlikely to underlie aging in blood-forming stem cells because they very rarely divide, and most mutations crop up during division. The infrequent divisions were believed to protect the cells from acquiring new mutations. Rossi, Weissman and the other first author, postdoctoral scholar David Bryder, PhD, tested that idea in two different sets of experiments. In the first, they studied the blood-forming stem cells of mice engineered to have single mutations that make them especially prone to accumulating additional genetic errors. In each of the three different types of mutant mice they studied, the stem cells appeared to behave normally and to produce new blood cells. However, the full truth came out when they took blood-forming stem cells from any of the three types of mice and used those cells to repopulate the bone marrow of irradiated mice. This type of experiment is much like using a bone marrow transplant to bring back the bone marrow in a person who has undergone extensive chemotherapy. Normally, a few stem cells are enough to completely replenish the bone marrow of mice and produce normal amounts of blood and immune cells. However, error-filled blood-forming stem cells taken from the mutant mice were much less effective at colonizing the depleted bone marrow than normal stem cells, and became even less effective when taken from older mutant mice. Rossi said these results suggest that mutations accumulating in stem cells as they age were preventing them from doing their normal job of producing new blood and immune system cells. However, these results were in mutant mice. Rossi wanted to know if the stem cells in normal, healthy mice also accumulate damage as they age. To address this, in the second set of experiments, Rossi isolated stem cells from the bone marrow of normal young and old mice, then stained those cells with a chemical that clings to a protein that’s associated with DNA damage. This protein can act as a flag to highlight nearby DNA damage. What he found is that young stem cells from normal mice contained no stain and therefore little or no DNA damage. Older stem cells, on the other hand, showed extensive staining. All of this adds up to one thing: blood-forming stem cells do accumulate DNA damage with age even though they rarely divide, and that damage is passed on to the blood and immune system cells they make. Weissman said these findings could explain the origin of blood cancer (leukemia) and immune dysfunctions that occur as people age. The next step is to show whether these results from mice hold true for human blood-forming stem cells. “If this work does extrapolate to humans, then it is absolutely consistent with the idea that blood-forming stem cells are the breeding ground for pre-leukemic mutations,” said, the Virginia and D.K. Ludwig Professor for Clinical Investigation in Cancer Research. Additional Stanford researchers who contributed to this work include postdoctoral scholar Jun Seita, MD, PhD. Funding for this study came from the National Cancer Institute’s Center for Cancer Research, the Damon Runyon Cancer Foundation, the California Institute of Regenerative Medicine, a Swedish Medical Research Council scholarship (STINT) and a Cancerfonden grant. 本文關鍵字:
老年性疾病
《美迪醫訊》歡迎您參與新聞投稿,業務咨詢: 美迪醫療網業務咨詢更多關于 老年性疾病 的新聞《上海醫療器械批發》產品推薦
|
合作支持:中華醫學會 | 中華醫院管理學會 | 國家食品藥品監督管理家用護理器械商城 | 國藥勵展展覽有限責任公 | 醫學裝備協會 |
刊登廣告 | 友情鏈接 | 廣告代理商加盟 | 關于美迪 | 法律聲明 | 隱私保護 | 網站地圖 |
把美迪網放進收藏夾 把美迪醫療網介紹給我的朋友 給美迪醫療網留言
美迪醫療網廣告業務聯系:021-51601230 產品咨詢業務聯系:021-51601230 傳真:021-56532303 美迪醫療網業務咨詢 互聯網藥品信息服務許可證:(滬)-經營性-2009-0003 中華人民共和國電信與信息服務業務經營許可證:(滬)B2-20090029 滬ICP備14001091號-8 公安備案號 31010602000199 醫療器械經營許可證: 滬靜藥監械經營許20210003號 第二類醫療器械經營備案憑證: 滬靜藥監械經營備20220042號 營業執照:統一社會信用代碼91310108676284138X互聯網藥品信息服務資格書:(滬)-非經營性-2023-0081 |